I wrote an article in 2007 about Web Analysts having development skills and my conclusion was that it would be an add-on to have basic skills. I got a comment from a user who thought that only having analytics skills are suffice and I somewhat still agree with him. I have seen a lot of Web Analysts who are perfect in analyzing data but don’t have development skills. They tend to do very well in their usual job but lack context pertaining to the implementation of code. This article will cover what I’ve learnt about the Web Analytics job market since then and what makes an ideal Web Analyst.
I have been analyzing the Web Analytics job market and have noticed that almost 90% of the listed profiles have a mention of Web languages like HTML, JavaScript or Flash. (P.S. I had predicted such a trend) This wasn’t so common a couple of years back when companies mostly looked for people who are simply ‘Analysts’. In my opinion, it is very important to know how the Web Analytics code works and the technology behind capturing data. My take on the Web Analytics data capture is explained here. In one of my assignments, I was involved in configuring the Web Analytics tracking code to track features which were not possible through the generic snippet. A JavaScript Wrapper had to be created and added in the code. This asset helps a Web Analyst to stand out and is often the path to rise in the organization as a multi-talented contributor. Apart from knowing programming, it is also helpful for a Web Analyst to know basic SQL as most companies have an in-house reporting system which might need to be extracted for analysis.
We can have hours of discussion on whether the above skills are really necessary for a Web Analyst but based on the current market situation, extra skills other than analysis will be more than useful. Below are a few skills which I think will be make a very good Web Analyst in the order of priority:
1) Analytical skills, drawing conclusion from data and offering recommendations to improve the business (Presentation skills and Excel knowledge included)
2) Client interaction and excellent interpersonal skills (Requirement gathering and building relationships)
3) Statistics knowledge (Ensuring whether data is ready for analysis and concepts like Confidence level)
4) Basic Programming skills (Understanding Web Analytics code and ability to enhance it)
5) Basic SQL skills (Ability to pull data from the backend databases if necessary)
I will appreciate if you can share your views in case you agree/disagree with this article.
Product management, data management, tag management, Adobe solution integrations and data analysis will be some of the themes of this blog but I may write about other relevant topics occasionally.
Sunday, April 26, 2009
Thursday, April 2, 2009
My take on Web Analytics Testing/Quality Assurance
When we discuss Web Analytics, we talk about Implementation, Reporting/Analysis and offering recommendations on how to improve a website. QA/Testing is something which is often put in the backburner. Companies focus on the Analysis of data but don’t usually concentrate on the validity of data. This often leads to reimplementation of code and the data being inaccurate. This is not good news for companies tagging their website with Web Analytics code and paying for Implementation and Analysis. This article at a high level explains some of the things which may help improve the Web Analytics QA process of organizations. These are some of the points which can be useful for Web Analysts looking to setup a Web Analytics QA process.
1) Spread the word: Spread awareness about Web Analytics QA benefits to your Manager/Stakeholders specifying how thorough Web Analytics QA can help them save cost in the future. For e.g. you can tell them that proper Web Analytics of the code/data can help companies reduce repetitive fixes/patches of code or resultant skewness of numbers while performing Analysis.
2) Include in release cycles: Try to incorporate Web Analytics QA in the weekly/monthly release cycles by bringing into perspective all stakeholders from QA Analysts, Developers to Program/Project Managers. It might involve lot of patience, persistence and convincing but it is worth the time. Come up with a process document/Flow chart depicting the QA process and share it with the concerned teams.
3) Performing QA/Knowledge Transfer: Once the Web Analytics QA process has been approved, start off by performing QA yourself and transition this responsibility to the resident QA Analysts as a Web Analyst should be involved more with Analysis/client interaction etc. Sharing tutorials about different Web Analytics tools might be helpful to pass on to the QA Analyst.
4) Create a reusable test document: Once the training has been imparted, the QA Analyst or Web Analyst can create a test document to perform Web Analytics testing. The QA document should leverage a Packet Sniffer (explained in my previous article) and should also validate data in the Web Analytics tool. For e.g. the below screenshot makes use of conditional formatting to color incorrect values (not matching requirement) as Red and correct values as green. This is a screenshot taken from a QA document which I created in one of my assignments where we were QA’ing Omniture data. This document helps in validating the code as well as checking the output and should be reusable.
Hope you like this post. Please comment in case you agree/disagree with my analogy about Web Analytics QA process being an integral part of a Web Analytics assignment.
1) Spread the word: Spread awareness about Web Analytics QA benefits to your Manager/Stakeholders specifying how thorough Web Analytics QA can help them save cost in the future. For e.g. you can tell them that proper Web Analytics of the code/data can help companies reduce repetitive fixes/patches of code or resultant skewness of numbers while performing Analysis.
2) Include in release cycles: Try to incorporate Web Analytics QA in the weekly/monthly release cycles by bringing into perspective all stakeholders from QA Analysts, Developers to Program/Project Managers. It might involve lot of patience, persistence and convincing but it is worth the time. Come up with a process document/Flow chart depicting the QA process and share it with the concerned teams.
3) Performing QA/Knowledge Transfer: Once the Web Analytics QA process has been approved, start off by performing QA yourself and transition this responsibility to the resident QA Analysts as a Web Analyst should be involved more with Analysis/client interaction etc. Sharing tutorials about different Web Analytics tools might be helpful to pass on to the QA Analyst.
4) Create a reusable test document: Once the training has been imparted, the QA Analyst or Web Analyst can create a test document to perform Web Analytics testing. The QA document should leverage a Packet Sniffer (explained in my previous article) and should also validate data in the Web Analytics tool. For e.g. the below screenshot makes use of conditional formatting to color incorrect values (not matching requirement) as Red and correct values as green. This is a screenshot taken from a QA document which I created in one of my assignments where we were QA’ing Omniture data. This document helps in validating the code as well as checking the output and should be reusable.
Hope you like this post. Please comment in case you agree/disagree with my analogy about Web Analytics QA process being an integral part of a Web Analytics assignment.
Labels:
packet sniffer,
QA,
validation,
web analytics testing
Subscribe to:
Posts (Atom)